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Abstract

We present a smoothed particle hydrodynamic model for incompressible fluids. As opposed to solving a pressure Pois-
son equation in order to get a divergence-free velocity field, here incompressibility is achieved by requiring as a kinematic
constraint that the volume of the fluid particles is constant. We use Lagrangian multipliers to enforce this restriction. These
Lagrange multipliers play the role of non-thermodynamic pressures whose actual values are fixed through the kinematic
restriction. We use the SHAKE methodology familiar in constrained molecular dynamics as an efficient method for finding
the non-thermodynamic pressure satisfying the constraints. The model is tested for several flow configurations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The smoothed particle hydrodynamic (SPH) method for solving the Navier–Stokes equations is a Lagrang-
ian mesh-free model that allows one to solve the continuum hydrodynamic equations with a set of interacting
fluid particles [1,2]. The original equations that are discretised are those for a compressible viscous fluid. In
many real applications, the time scale of sound propagation is much smaller than the time scale of vorticity
diffusion, which is basically dominated by the viscosity of the fluid. If the only relevant scale for the problem of
interest is the viscous time scale, it is a waste of computer time to resolve the sonic time scale, which requires
very small time steps in order to comply with the Courant condition. For a recent example illustrating these
difficulties see Ref. [3]. In addition, the compressibility of the model poses problems with the sound wave
reflection at boundaries. One approach in order to simulate incompressible flows with SPH is to run the sim-
ulations in the quasi-incompressible limit, that is, by selecting the smallest possible speed of sound which still
gives a very low Mach number ensuring density fluctuations within 1% [4,5]. This method is known as the
Weakly Compressible Smooth Particle Hydrodynamics (WCSPH). Recently a proposal for constructing an
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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incompressible SPH model has been introduced, which solves a pressure Poisson equation at every time step
[6–8]. The Poisson equation arises as a consequence of the requirement that the divergence of the velocity field
vanishes. We note that the divergence of the velocity is proportional to the time rate of change of infinitesimal
volume elements of the fluid. If the time derivative of an infinitesimal volume element is zero, it means that any
infinitesimal element evolves in such a way that it maintains its volume constant. Therefore, in the continuum
limit, zeroing the divergence of the velocity field and keeping the volume of infinitesimal elements constant are
equivalent approaches. In this paper we follow the last approach and formulate an incompressible SPH model
by requiring that the volume of each fluid particle is a constant of motion. This set of additional dynamical
invariants are actually a geometrical restriction that can be enforced through the use of Lagrange multipliers.
We are following, therefore, a suggestion first made by Monaghan [4]. The advantage of the method presented
here over a method that enforces that the velocity has zero divergence is that the latter does not ensure that the
density field is constant. In a numerical scheme the requirement that the derivative of a function is zero not
always warrants that the function is a constant, due to numerical errors that may accumulate.

The paper is distributed as follows. In Section 2 we show how to enforce the constancy of the volume of the
fluid particles through Lagrange multipliers. We review in Section 3 the SHAKE method whose aim is to find
an efficient numerical method to solve for the Lagrange multipliers. The implementation of the algorithm to
our model is presented in Section 4. Finally, we test the method in Section 5 for the Kolmogorov and Taylor–
Green flows, and present results for an elliptical drop. We conclude finally with Section 6.

2. The model

In Ref. [9] we have shown how to formulate a model within the family of smoothed particle hydrodynamics
that is thermodynamically consistent. In particular, we have shown that the independent variables of each of
the N fluid particles (position ri, velocity vi, and entropy Si), evolve according to two distinct mechanisms. The
first one is due to a purely reversible dynamics while the second one is due to a purely irreversible dynamics.
All the issues of the incompressibility can be formulated by focusing on the reversible part of the dynamics so
we restrict momentarily the discussion to it.

The reversible part of the dynamics of the SPH model can be cast in the following Hamiltonian form
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where the energy function is given by
EðxÞ ¼
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h i
: ð2Þ
Here, x is a shorthand for the set of independent variables, mi is the constant mass of particle i (with value m),
and E i ¼ Eðmi; Si;V iÞ is the internal energy of the ith fluid particle as a function of the extensive thermody-
namic variables (mass, entropy and volume) of the ith fluid particle. The volume Vi of the fluid particle is de-
fined in the SPH methodology as the inverse of the density di which, in turn, is defined as
di ¼
X

j

W ðjri � rjjÞ ¼
1

Vi
; ð3Þ
where W(r/h) is a bell-shaped weight function with a finite support h and which is normalized to unity
Z
drW ðrÞ ¼ 1: ð4Þ
According to Eq. (3) the volume of each fluid particle is an analytical function of the positions of the
neighbouring fluid particles. Note that if there are many neighbouring particles around a given one, the
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contribution to the sum in Eq. (3) will be large and so will be the density of the particle. Its associated volume
will be thus smaller. For future reference, we introduce also the positive function F(r) through
rW ðrÞ ¼ �rF ðrÞ; F ðrÞP 0: ð5Þ
A usual selection in SPH for W(r) is the Lucy function,
W ðrÞ ¼ 5

ph2
1þ 3

r
h
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1� r
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� �3

hðr=hÞ; ð6Þ
where h(x) is a step function that takes the value 1 if 0 6 x 6 1 and zero otherwise. The prefactor in Eq. (6)
ensures the normalization (4) in two spatial dimensions. The function F(r) follows
F ðrÞ ¼ 60

ph4
1� r

h

� �2

hðr=hÞ: ð7Þ
We can perform explicitly the derivatives of the energy function with respect to the state variables appearing in
Eq. (1), with the result
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where we have introduced the pressure Pi and temperature Ti of the fluid particle i, which are defined in the
usual thermodynamic sense
P i ¼ �
oE i

oVi
;

T i ¼
oE i

oSi
:

ð9Þ
The equations of motion that result from (1) are then
_ri ¼ vi;

m _vi ¼
X

j

oVj

ori
P j;

_Si ¼ 0:

ð10Þ
These equations conserve the total energy defined in Eq. (2), as a consequence of the fact that the matrix in Eq.
(1) is antisymmetric. They also conserve linear momentum, as a consequence of the invariance under transla-
tions of the total energy. This translational invariance is due to the corresponding invariance of the volume,
i.e.
Viðr1 þ a; . . . ; rN þ aÞ ¼ Viðr1; . . . ; rNÞ; ð11Þ

where a is an arbitrary translation vector. By deriving with respect to a and setting a = 0 at the end, we find the
identity
X

i

oVj

ori
¼ 0: ð12Þ
This property ensures that total momentum is conserved by Eq. (10).
In order to describe an incompressible situation, we want to enforce the geometrical restriction that the vol-

ume of each fluid particle is a constant of motion. Note that the rate of change of the volume of the particles is,
according to the chain rule and the first Eq. (10)
_Vi ¼
X

j

oVi

orj
� vj: ð13Þ
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This equation allows us to interprete
½r � v�i �
1
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orj
� vj; ð14Þ
as a discrete version of the divergence of the velocity. Instead of enforcing incompressibility by requiring that
the divergence of the velocity field is zero, this is, that the time derivative of the volume is zero, we enforce
incompressibility by requiring that the volume of every fluid particle is constant, this is,
Viðr1; . . . ; rN Þ ¼ V0
i ; i ¼ 1; . . . ;N ; ð15Þ
where V0
i is the volume of particle i at time t = 0.

The usual way in order to enforce a constraint in classical mechanics is through the use of Lagrange mul-
tipliers [10]. In our case, the method of Lagrange multipliers transforms the set of Eq. (10) into the following
set
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ð16Þ
where kj are N Lagrange multipliers, whose actual value is fixed by the fact that the N restrictions (15) are
satisfied.

Note for completeness, that the modified equations of motion can still be cast in a Hamiltonian form,
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The matrix above is antisymmetric and this automatically ensures that the energy function is conserved by Eq.
(17). It is a matter of easy calculation to show that the position and velocity equations reduce to (16), whereas
the entropy equation becomes
_Si ¼ �
ki

T i

X
j
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orj
� vj ¼ 0; ð18Þ
where we have used Eq. (13) and the fact that, now, _Vi ¼ 0. Therefore, Eq. (16) represent the Hamiltonian
dynamics of a system of fluid particles that move with constant volumes.

By using the definition of the volume (3), we obtain
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where rij = ri � rj and Eq. (16) become
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For compressible fluids, when ki = 0, these equations are the SPH symmetrized equations preferred by
Monaghan [4]. As time proceeds, the values of kj of each fluid particle adjust themselves in such a way
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to maintain constant the volume of the fluid particles, despite of the fact that the fluid particles move. The
Lagrange multipliers can be interpreted as a non-thermodynamic pressure that adds up to the thermody-
namic pressure.

Eq. (20) are a discrete representation of the inviscid Euler equations, which are purely reversible. In order to
describe a viscous fluid, viscous forces have to be included in Eq. (20). The full set of equations, in this case,
reads [9]
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where g is the shear viscosity (bulk viscosity is neglected for simplicity), eij = rij/jrijj and vij = vi � vj.
For an incompressible fluid there is no need to introduce an equation of state. As we will be comparing the

incompressible algorithm with a compressible one, we need an equation of state for this last one. We adopt the
following one
P ðqÞ ¼ q0c2

2

q
q0

� �2

� 1

" #
; ð22Þ
where c is the speed of sound and q0 is the equilibrium mass density. With this equation of state which does
not depend on the entropy variable, there is no coupling with the dynamic equation for this variable, which
will not be considered in the sequel.

3. The Newton–Raphson and SHAKE methodologies

The N Lagrange multipliers ki take values such that as time proceeds, the N holonomic constraints (15) are
satisfied. The situation here is closely reminiscent to that encountered in the molecular dynamics simulations
of molecules with constraints. For this type of problem a powerful methodology, known as SHAKE, has been
developed (see [11] for a neat interpretation of the method). The SHAKE method is just a particularly simple
case of the Newton–Raphson method. The idea is summarized here.

Let x = {xk, k = 1, . . . ,N} denote the state of the system at time t. We can write formally the equations of
motion (21) as
_x ¼ F ðx; kÞ; rðxðt; kÞÞ ¼ 0; ð23Þ
where k = {kk,k = 1, . . . ,N} denotes the set of N Lagrange multipliers, x(t,k) is the formal solution of the
equations of motion and r(x(t,k)) = 0 are the set of N constraints. Given an integrator method like, for exam-
ple, a Runge–Kutta or a Predictor–Corrector (P–C) method, we will have after a time step Dt a new state x 0

which, in general, will depend on the Lagrange multipliers x 0(k). The particular functional dependence on k
depends on the integrator. The new state satisfies the N constraints
rðx0ðkÞÞ ¼ 0; ð24Þ
or in a more compact notation
rðkÞ ¼ 0 ð25Þ

for the N-vector k. This is a set of N non-linear equations for the set of N unknowns, the Lagrange multipliers
k at time t. The solution of a set of non-linear equations is very difficult to obtain in general (see Ref. [12]).
However, we have to solve (25) for every time step, and we assume that we have solved the problem in the
previous time step, while at the new time step the positions of the particles have changed by small amount
(proportional to Dt). This means that the solution of (25) for k in the previous time step is a good guess
for the initial value of an iterative process. In this case, we expect a brute force calculation to work reasonably
well. The Newton–Raphson method is such a brute force method.
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The Newton–Raphson method is based on the Taylor expansion
rðkþ dkÞ ¼ rðkÞ þ BðkÞdkþOðdk2Þ; ð26Þ
where
BðkÞ � or
ok
: ð27Þ
Now, assume that kn is a good guess for the solution of (25). Then, it can be improved by adding a correction
dk = kn+1 � kn such that r(kn + dk) = 0. Then Eq. (26) leads to
dk ¼ �B�1ðknÞrðknÞ þOðdk2Þ: ð28Þ
By neglecting higher order terms this can be written as
knþ1 ¼ kn � B�1ðknÞrðknÞ; ð29Þ
which allows for an iterative solution provided that the iteration converges. In this case, kn+1 � kn, implying
r(kn) � 0. Here, n labels the iteration during a given time step.

The Newton–Raphson scheme suffers from the problem of having to invert the N · N matrix B, which is
computationally expensive (i.e. for a LU decomposition we need OðN 3Þ operations), despite of the fact that
in our particular problem it turns out that B is a sparse matrix. The SHAKE method is an attempt to avoid
this matrix inversion. Let us see how it works. Write Eq. (29) in compact matrix form
Bnðknþ1 � knÞ ¼ �rðknÞ; ð30Þ

where Bn = B(kn). Consider the matrix Sn = Diag[Bn]�1, that is, the inverse of the diagonal of the matrix Bn.
The matrix SnBn has the number 1 in the diagonal, so we may write SnBn = 1 � An, where An has zero in the
diagonal. By multiplying (30) with Sn we can finally write
knþ1 � kn ¼ ð1� AnÞ�1
SnrðknÞ: ð31Þ
Now, we can invert 1 � An through the series expansion
ð1� AnÞ�1 ¼ 1þ An þ A2
n þ A3

n þ � � � ð32Þ

If the series can be truncated, say with a few terms, then we only have to perform a few multiplications of a
matrix and a vector (OðN 2Þ process). In the luckiest case, we can use the maximum truncation of Eq. (32), this
is, (1 � An)�1 � 1. This results in the extremely simple iterative algorithm
knþ1 ¼ kn � SnrðknÞ: ð33Þ

This algorithm, provided the iteration converges, is very efficient, because the matrix Sn is diagonal. Note that
the error due to truncation in Eq. (32) plays no crucial role provided that the iteration for k converges. For if it
converges, it means kn+1 � kn = 0 and, therefore in Eq. (31) r(kn) = 0, so we get the correct k that satisfies the
constraint. In that respect, the algorithm in Eq. (33) can be further simplified by using instead of Sn, which has
to be computed in each iteration, just the value of S0 evaluated at the first step of the iteration for k0 = 0. As
we show in the Appendix, this is the SHAKE method. As a last remark, let us notice that using SHAKE the
iteration requires only a OðNÞ number of operations. Additionally, we bypass the problem of storing at every
iteration the N2 elements of the matrix B, as only its N diagonal elements are relevant for the numerical loop.

4. The algorithm

We will solve the differential equations (21) by a second order integrator. The positions are updated accord-
ing to
r0iðkÞ ¼ r0
i þ

X
j

Xijkj; ð34Þ
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where r0
i are the particle positions evaluated after an unconstrained time step by using a second order integra-

tor, i.e. Predictor–Corrector (P–C), while the second term represents the corrections in the positions according
to the constraint condition (24). The coefficients in (34) read
Xij ¼
Dt2

2d2
j m

dij

X
k

F ikrik þ F ijrij

" #
: ð35Þ
The velocities are updated according to
v0iðkÞ ¼ v0
i þ

2

Dt

X
j

Xijkj; ð36Þ
where v0 are the unconstrained particle velocities. In Eqs. (34) and (36), r0
i ; v

0
i are the result of performing a

second order (P–C) time step of the compressible model.
The new positions r0iðkÞ should satisfy the constraint (15). In the present case, the constraint in Eq. (24) can

be cast in the following form involving number densities
riðkÞ ¼
X
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i ; ð37Þ
where r0ijðkÞ ¼ jr0iðkÞ � r0jðkÞj and d0
i ¼ 1=V0

i . The matrix B defined in Eq. (27) becomes
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The iteration (33) now becomes
knþ1
i ¼ kn

i �
1

B0
ii

½dn
i � d0

i �; ð39Þ
where
dn
i �

X
j

W ðjr0iðk
nÞ � r0jðk

nÞjÞ;

B0
ii ¼

X
j

F ðr0ijðkÞÞr0ijðkÞ � ½XjiðkÞ �XiiðkÞ�jk¼k0
:

ð40Þ
Once Eq. (39) is iterated to the desired convergence, the output of the subroutine is r0iðkÞ and the set of ki that
fulfill the constraints. In order to finish the time step, we need to compute the new velocities according to Eq.
(36).

We should point out that at each iteration we have to compute first the positions r0iðk
nÞ, through Eq. (34)

and the current value of kn. Then we have to compute the actual density of the fluid particles. This means that
in each iteration we must loop over all the particles in the system. Although it appears that the computational
effort is order N2 because we have a loop within a loop, the coding can be done in such a way that the effort is
of order 2N: Before entering the loop on the components of k, compute the densities

P
jW ðr0iðk

nÞ � r0jðk
nÞÞ. In

this way, instead of a nested loop, we have two consecutive loops. Actually we have to call two times the
linked-list cell routine which has an algorithmic complexity of OðN log NÞ instead of OðNÞ.

A last remark on the incompressible algorithm described above is here in order. As already mentioned in
this section, the strategy adopted consists on splitting the dynamics in two parts which correspond to a first
compressible step (that provides r0

i ; v
0
i ) followed by a second one (containing the Lagrange multipliers) able to

restore exact incompressibility. A question which arises naturally is therefore, which kind of compressible
dynamics (i.e. equation of state) should be used in this intermediate step and, in particular, whether the result-
ing Courant condition for this intermediate step limits the time step. Note, however that in Eq. (21) we can
introduce a new Lagrange multiplier as k0i ¼ P i þ ki and use the SHAKE algorithm for computing k0i directly.
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This bypass the need of an equation of state at the intermediate step or, equivalently, allows to set Pi = 0 in the
incompressible algorithm.

5. Numerical results

In this section we present the comparison between results of the simulation of the incompressible viscous
Eq. (21) and the correspondent weakly compressible equations obtained by neglecting the Lagrange multipli-
ers in Eq. (21).

5.1. Kolmogorov flow

As a benchmark problem, we consider first the so-called Kolmogorov flow, already studied by Posch and
Hoover via Smoothed Particle Hydrodynamics simulations [13]. The problem can be described as follows: a
Newtonian fluid is defined on a unbounded domain and a body force is applied acting along the x-direction
and periodic in the transverse y-direction. The scheme of the body force is shown in Fig. 1. This is an inter-
esting test for an hydrodynamic code because it deals specifically with the transition from a laminar to a tur-
bulent flow. Also the fact that the external forcing is periodic, allows for the use of periodic boundary
conditions. As has been shown in [6], different implementations of boundary conditions on solid walls affect
strongly the nature of the flow. The Kolmogorov flow, being periodic in space, does not suffer from this prob-
lem, thus allowing for a clean comparison between different models.

Let us consider a body force (per unit mass) of the following form:
Fig. 1.
directi
F ¼ F 0 sinðkyyÞbx; ð41Þ

where ky = 2p/Ly is the wave vector and Ly is the length of the simulation box in the y-direction. For small
values of F0 (in a sense to be clarified later), a theoretical solution can be obtained for the velocity field which
has the same functional form as the perturbation
v ¼ v0 sinðkyyÞbx; ð42Þ

with v0 ¼ F 0=mk2

y and m is the kinematic viscosity. Nevertheless, for increasing values of the applied force F0,
the Kolmogorov flow is known to be unstable and a secondary steady flow appears which consists of a peri-
odic configuration of stationary vortices [13,14]. The stability threshold depends upon the Reynolds number
which, for this particular flow, reads
Re ¼ F 0

m2k3
y

: ð43Þ
Sinusoidal body force F ¼ F 0 sinðkyyÞx̂ in the Kolmogorov flow. Lx and Ly are the size of the simulation box in the x and y

ons, respectively, and the spatial frequency is ky = 2p/Ly.
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For values of the fluid parameters, corresponding to Re > Rec, the flow develops the instability and secondary
flow appears. Here, Rec is a critical Reynolds number which, in the limiting case of infinite aspect ratio
(a = Ly/Lx = 0), assumes the value

ffiffiffi
2
p

. For increasing values of the Reynolds number, even the secondary
flow starts to exhibit oscillations, and becomes unstable at Re � 2.5Rec. For larger values of Re higher har-
monics appear in the flow and eventually, it becomes turbulent [14].

In this section we compare the results of a Weakly Compressible SPH algorithm (WCSPH) with those
obtained by using the Incompressible SHAKE-based algorithm (ISPH) as represented in Eq. (21). The com-
parison is done for values of the fluid parameters giving a Reynolds number sufficiently large to exhibit
hydrodynamic instability (i.e. secondary flow): in our case we consider Re = 5. Note that for the finite
aspect ratio a = 0.4 used in this paper, the critical Reynolds number for secondary flow is Rec � 2.5, and
therefore Re = 5 corresponds to a stable steady state for the secondary eddies. We used a total number
of N = 4000 SPH particles, initially placed on a regular square lattice at distance d = 0.025 apart (so all
the particles have the same volume). The simulation domain is [0, 2.5] · [0, 1]. The kernel used was the Lucy
function in Eq. (6) with a cutoff radius h = 0.075, which involves an average number of neighbouring par-
ticles approximately equal to 20. For the WCSPH algorithm, the equation of state (22) was used with a
Mach number M = v0/c = 0.1 which permits us to reduce the density fluctuations Dq/q to the order of
1%. We encourage the instability by imposing a small initial velocity field given by V = (Vx,Vy) = 0,d-
sin(2px/Lx)cos(2py/Ly) with d = 0.01.

As already noticed, the weakly compressible approach needs to resolve the time scales up to the smallest
characteristic sonic time. For relative large values of the Reynolds number, such a sonic time scales are much
smaller than the relevant viscous ones describing vorticity decay, and therefore, it is waste of computer time to
resolve them. This can be seen by looking directly at the stability condition for the time step, based on the
viscous terms, which reads [6]
Dt 6 0:125
h2

m
; ð44Þ
where h is meant to be the spatial discretization length. It is well known that, for relative large Reynolds num-
bers, this condition is not dominant and one has to satisfy the strictest CFL condition based on the speed of
sound, which reads
Dt 6 0:25
h
c
: ð45Þ
This condition ensures that there is no numerical propagation of signals faster than the speed of sound c. On
the other hand, if incompressibility can be ‘‘artificially’’ maintained within the flow (i.e. by solving the Poisson
equation for the pressure [6,7] or, as in our case, by using the SHAKE-iteration), the constraint (45) can be
relaxed to
Dt 6 0:25
h

vmax

; ð46Þ
where vmax is the maximum flow velocity. In the case of Mach number M = vmax/c � 0.1, the previous choice
corresponds to a possible increase in the time step Dt of 10 times respect to the weakly compressible case.
However, it should be noticed that a choice of M = 0.1 does not always guarantee density fluctuations of
1%. Under particular flow conditions (for example those characterized by stagnation points, i.e. flow around
a cylinder) it could be necessary to reduce further the Mach number (and therefore Dt) in order to satisfy Dq/
q < 0.01. In this case, the advantages of an incompressible flow solver (i.e. Poisson or SHAKE) are likely to be
even more pronounced.

Fig. 2 (top) shows the Kolmogorov steady-state velocity flow field evaluated via the WCSPH algorithm
with Re = 5 and M = 0.1. The secondary flow characterized by a regular configuration of stationary vortices
is clearly visible. Analogously to the previous case, an ISPH simulation has been carried out for the same value
of the Reynolds number. Nevertheless, for the resolution h and the small Reynolds number considered here,
the viscous condition (44) was found to be dominant and no pronounced speed-up in the overall calculation
was observed. In the best case (i.e. for the coarsest resolution only a factor 2 was gained). This is consistent



Fig. 2. Steady-state secondary flow evaluated via the WCSPH (top) vs. ISPH (bottom).
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with the fact that, for this small Reynolds number, the viscous condition starts to affect only the ISPH time
step, therefore limiting its overall performance. Fig. 2 (bottom) shows the steady-state solution evaluated via
ISPH. Also in this case, a steady secondary flow is obtained, which is in close agreement with the previous
WCSPH simulation shown in Fig. 2 (top).

In order to check the accuracy of the incompressible approximation, we plotted in Fig. 3 (top) the particle-
values of the mass density q at the steady state (corresponding to the flow fields shown in Fig. 2) as a function
of the x-coordinate of the fluid particles. The SHAKE-cycle (39) is iterated n times until the condition
max
i
jqn

i � q0
i j < �; ð47Þ
over each particle is satisfied, with � = 10�2. For this tolerance, the ISPH technique should obtain values for
density field comparable with WCSPH. In practice, WCSPH shows deviations Dq � 0.03 around the averaged
density value, while the Dq for ISPH are consistent with � and correspond to the region in Fig. 3 (top) between
the upper and lower lines (the central line corresponds to the initial constant density q0). Notice that both
methods seem to achieve a steady-state density field centered around an average value slightly larger than
q0, but the ISPH results appear much more confined.
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Fig. 3 (bottom) also shows the time evolution of the averaged density (over all the particles). The plot con-
firms the previous results, showing a little increase in the global density for the ISPH and WCSPH compared
with the input density q0 shown in dashed line. In order to compare quantitatively the level of incompressibil-
ity ensured by the two methods, we define, according to Cummins and Rudman [6], the coefficient of variation
of mass density as follows:

e

CV ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðqiðtÞ � q0Þ

2
q

1
N

PN
i¼1

qiðtÞ
q0

: ð48Þim
In Fig. 4 the coefficient CV is plotted versus time, indicating that the ISPH method ensures more accurately
the incompressibility condition (approximately a factor 2). In addition, it should be pointed out that such a
coefficient remains stable in time, contrary to the simulations performed by Cummins and Rudman, when
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Fig. 4. The spread of the values of the density in Fig. 3 (top) can be quantified with the CV coefficient defined in Eq. (48). Note the
improved behaviour of ISPH as compared to WCSPH.
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a clear unwanted increasing trend was observed [6]. This is an important difference between the two techniques
because it shows that the SHAKE-based algorithm is able to satisfy incompressibility at every time step during
the simulation, avoiding the large density variation errors (cumulating in time) which come from the solution
of a Poisson equation for the pressure [6]. We will discuss in detail this aspect in the next section.

5.2. Taylor–Green flow

As a further validation for the incompressible SPH flow calculations based on SHAKE, we consider the
time decay of a two-dimensional periodic array of vortices. The problem has an analytical solution and it
has been already studied via SPH [15]. In 2D, the solution reads:
vxðx; y; tÞ ¼ �v0e�
8p2t
Re

cosðk0xÞ cosðk0yÞ;

vyðx; y; tÞ ¼ þv0e�
8p2t
Re

sinðk0xÞ cosðk0yÞ;
ð49Þ
where v0 = 1 and k0 = 2p/L. The computational domain is [0, L] · [0,L] with L = 1. According to previous
numerical calculation [15], we adopt as an error estimate the relative error L1 defined in the following way
L1 ¼ max
tmax

t¼0

vthðtÞ � vsphðtÞ
vthðtÞ

���� ����� �
; ð50Þ
where vth(t) and vsph(t) are, respectively, the maximum theoretical and the maximum SPH velocities at the time
t. tmax is the final time defined in such a way that the maximum velocity decays below the value
vth(tmax) = vth(0)/50. Note that L1 gives an estimate of the maximum relative error during the whole
simulation.

A first simulation is run at a small Reynolds number Re = 0.1. The particles are initially at the nodes of a
regular mesh and the typical particle paths for this flow are shown in Fig. 5. The Mach number is set equal to
0.1 for WCSPH, while for ISPH a tolerance density error � = 0.01 was considered. Fig. 6 shows the typical
viscous decay of the maximum velocity for WCSPH and ISPH compared with the analytical solution in
Eq. (49). The total number of particles is N = 10,000. For this small Reynolds number, there are no visible
differences between WCSPH, ISPH and the theory.

In order to estimate the error in the two methods, we plot in Fig. 7 the relative error L1 of the ISPH vs.
WCSPH for different resolutions ranging from 400 to 10,000 particles and Re = 0.1. Both methods exhibit



Fig. 5. Particle paths for the Taylor–Green flow for Re = 0.1.

Fig. 6. Decay of the maximum velocity (ISPH vs. WCSPH) for Re = 0.1 and 10,000 particles. The line corresponds to the analytical
solution.
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similar convergence. By increasing the number of particles above 10,000 we are able to reduce the error to a
value below 1%, but already a resolution of 1000 particles is sufficient to reproduce this flow accurately
(L1 < 6%).

Small Reynolds number flows are described very satisfactorily by the two methods. However, Chaniotis
et al. [15] pointed out that the SPH accuracy for this flow usually deteriorates for increasing Reynolds num-
bers. Indeed, in this case, the inertia of the particles becomes relevant and, due to the slow vorticity decay, the
particles have the time to change their spatial configuration considerably. This change in the particle’s config-
uration produces notable fluctuations in the hydrodynamic variables, which are not present in the case of
small Reynolds number flows. In the simulations at Re = 100 that we present below we observe a transition
from ordered to disordered meshes which strongly affects the quality of the results. To avoid the transition, the
initial condition for the particle locations at Re = 100 is the outcome of a previous run of the same Green–
Taylor flow until full relaxation of the particle positions. The initial velocity field is then imposed at t = 0



Fig. 7. L1 error for the Taylor–Green flow (ISPH vs. WCSPH) for Re = 0.1 and different particle resolutions.
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by using Eq. (49) on the relaxed particle configuration. An alternative procedure to avoid these features would
be to remesh according to the procedure described in [15].

In the next simulations at Re = 100 we consider the following notations for the particle resolutions: m2
(40 · 40), m3 (60 · 60), m4 (80 · 80), m5 (100 · 100). In Fig. 8 and Fig. 9, the velocity decays are plotted
for both ISPH and WCSPH with different number of particles. Here, differently to the previous case, devia-
tions between the SPH and theoretical values for the maximum velocity are visible. A number of particles
N = 1600 (m2) is not sufficient to reproduce accurately the velocity decays for neither ISPH nor WCSPH.
However, by increasing the resolution (m2! m5), the corresponding SPH solution seems to converges to
the exact one.

In order to estimate the error made in the ISPH calculations, we examine again the behaviour of L1.
Fig. 10 shows the final maximum relative errors as a function of the number of particles. The tendency of
L1 to converge to zero is clear. One thousand and six hundred particles (m2) are not sufficient to describe
Fig. 8. Evolution of the maximum velocity for the ISPH and for different resolutions (Re = 100). The dotted line corresponds to the
analytical solution.



Fig. 10. Convergence of L1 for the ISPH (Re = 100). A resolution of 10,000 particles (m5) produce a maximum relative error smaller than
5%. In this case the order of convergence is approximately 2, L1 � h2.

Fig. 9. Evolution of the maximum velocity for the WCSPH and for different resolutions (Re = 100). The dotted line corresponds to the
analytical solution.
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accurately the evolution of this flow (the relative error is of the order of 60%). However, by increasing the
number of particles to 10,000 (m5) we can reduce it below 5%.

Cummins and Rudman [6] suggested that a check of the particle positions could be relevant to estimate the
overall accuracy of the incompressibility condition. Accordingly, in Fig. 11 and Fig. 12 we plot two snapshots
(time t = 2) of the particle configurations for the WCSPH and ISPH for Re = 100. In both cases the particles
are homogeneously distributed over the solution domain. The only difference appears to be in the center of the
main vortex where the particles (for ISPH) tend to join together forming lines. This effect has been also
observed by Cummins and Rudman in the case of the projection SPH (PSPH) method and the authors sug-
gested that it could be related to the unwanted rise of the CV coefficient. Contrary to PSPH, this specific par-
ticle re-arrangement does not have, in our simulations, any effective impact on CV which remains whatsoever
constant during all the run. A possible explanation of this behaviour for PSPH could be given in the following



Fig. 12. Taylor–Green particle configuration (m5) for ISPH at time t = 2 (Re = 100).

Fig. 11. Taylor–Green particle configuration (m5) for WCSPH at time t = 2 (Re = 100).
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terms: as suggested in [6], the new velocities vn+1, obtained by applying an SPH projector to the preliminary
velocity field, are effectively divergence-free only within an unavoidable spatial truncation error. In addition,
the precision in the determination of the divergence-free vector field is not necessarily the same as that
obtained by the solution of the Poisson equation, but errors can arise from a difference between the SPH for-
mulation for the Laplacian and for the gradient of the divergence [16]. Hence, errors in particle positions will
be produced (and consequently in the density field) which will cause wrong projections at the next time step
and therefore error accumulation. In the SHAKE method, we enforce incompressibility not through a veloc-

ity-dependent condition but, rather, through a geometrical constraint on the particle positions. By construction,
in ISPH the accuracy in the density field is not affected by truncation errors but it is controlled uniquely by the
tolerance parameter �.

As a last check for spatial convergence, we consider the following L2 norm for the velocity field:
kvðtÞk2 ¼
1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvsph

i ðtÞ � vth
i ðtÞÞ

2
q

: ð51Þ
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The index i runs over a regular lattice that has a number of nodes equal to the number N of particles. vsph
i ðtÞ is

the particle velocity interpolated at the lattice nodes and vth
i ðtÞ is the analytical solution for the velocity field at

the same node.
Table 1 shows the values of L2 for the ISPH method. Convergence is obtained for increasing number of

particles at every time t = 0.9, 1.8, 2.7, 3.6, 4.5. Table 2 shows the corresponding L2-results for the WCSPH.
Both methods converge for times smaller than t = 3.6 and there is an indication that the convergence of
WCSPH is slightly faster than the convergence of ISPH. This is probably due to the more homogeneous dis-
tribution of the particles in WCSPH. However, it should also be noticed that for larger times WCSPH does
not converge to the analytical incompressible solution for increasing N, (see the row corresponding to t = 3.6,
4.5 in Table 2). A detailed analysis shows that the deviations between theoretical and simulation results are
due to anisotropies in the distribution of particles near the stagnation points of the flow. These anisotropies
also appear in the ISPH simulation but do not seem to be so dangerous as to compromise the convergence of
the method. Again, remeshing is a method to avoid these anisotropies. As a final remark, we should point out
that, in our convergence analysis, the cutoff radius h has been reduced consistently in order to keep the average
number of neighbouring particles constant, h � Dx. As suggested also in [6] higher order of convergence could
be obtained by requiring that h � Dxq with q < 1.

5.3. Efficiency

In this section we evaluate the efficiency of the ISPH method compared with WCSPH. We extract the CPU
times required to run the two respective algorithms in the Taylor–Green flow until t = 2 for Re = 100. The
results are presented in Fig. 13, where the advantage of the ISPH is evident over all the range of resolutions
simulated.

It should be noticed that the maximum advantage of the ISPH vs. WCSPH is obtained at lower and med-
ium resolutions. Indeed, while WCSPH must comply always with the CFL condition (45), the time step con-
straint affecting the ISPH method is given by Eq. (46) and therefore a time step 10 times larger can actually be
used. However, for increasing number of SPH particles, the viscous condition (44) becomes dominant over
(45) and a smaller time step must be adopted. This restriction affects of course earlier the ISPH method, being
its maximum allowable time step much larger than WCSPH. The maximum speed-up factor has been found to
be 4 for N = 1600, and it remains nearly constant until N = 104 where the ISPH method starts to be influenced
Table 1
Spatial convergence results (ISPH) for the Taylor–Green flow

Time m2 m3 m4 m5

0.9 6.986 4.707 3.414 2.090
1.8 6.045 2.640 1.646 0.942
2.7 3.051 1.432 0.789 0.331
3.6 1.316 0.757 0.327 0.185
4.5 0.563 0.373 0.149 0.086

In the columns, the L2 velocity norms (·102) corresponding to different resolutions and for several times are shown (Re = 100).

Table 2
Spatial convergence results (WCSPH) for the Taylor–Green flow

Time m2 m3 m4 m5

0.9 5.012 1.747 1.507 0.531
1.8 2.495 0.807 0.416 0.369
2.7 2.192 0.309 0.185 0.152
3.6 1.776 0.200 0.095 0.107
4.5 1.339 0.195 0.128 0.194

In the columns, the L2 velocity norms (·102) corresponding to different resolutions and for several times are shown.



Fig. 13. CPU time as a function of the number of particles: WCSPH vs. ISPH for the Taylor–Green flow.
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by the viscous condition (still a factor 3 is gained). The cross-point between the two curves is expected at
higher resolutions where the viscous condition is dominant for both methods.

5.4. Deformation of an elliptical drop

Finally, the ability of ISPH to simulate free surfaces has been tested for the two-dimensional flow of an
elliptical drop. As illustrated in Ref. [4], if an initial linear velocity field is imposed (and provided that the drop
remains elliptical) a simple set of equations can be found for the time-dependent evolution of the axes of the
ellipsoid (in the following denoted as a and b). In Ref. [4], Monaghan showed that from the momentum equa-
tion it is possible to derive the following equation for A
dA
dt
¼ A2ða4 � x2Þ
ða4 þ x2Þ ; ð52Þ
where A is defined through
da
dt
¼ �aA ð53Þ
and x = ab at time t = 0. The previous set of two coupled differential equations has been solved numerically
and the results compared with those of ISPH and WCSPH. For the latter, two different density evaluations
have been implemented: (A) standard way through the particle summation (3) (WCSPH) and (B) update of
the density through the discrete continuity equation as in Ref. [4] (denoted in the following as CONT-
SPH). Fig. 14 shows the evolution of the minor axis a for ISPH, WCSPH and CONT-SPH compared with
the solution obtained by integrating numerically Eqs. (52) and (53). In all cases a linear velocity field
(Vx,Vy) = 2.3 · (X � Xc,�Y + Yc) was applied to an initially circular drop (modeled with 1024 particles),
being (Xc,Yc) the center of the drop. The Mach number was set equal to 0.1 for the WCSPH and CONT-
SPH while in the ISPH run, the SHAKE routine was iterated at every time step until � < 0.01 as in the previous
sections.

From Fig. 14 it results that ISPH and CONT-SPH work better than WCSPH where strong fluctuations
during decay take place. This fact has been confirmed by the analysis of the corresponding particle configu-
rations at time t = 0.4 (see Fig. 15) where it is clearly visible how the elliptical shape of the drop simulated by
WCSPH has been completely lost due to artificial tension effects. Concerning ISPH and CONT-SPH, Fig. 14
suggests that the two methods work equally well: the ISPH solution is closer to the analytical one until t = 0.4
when the corresponding curves cross each other; CONT-ISPH, although underestimating more markedly the



 1

 1.1 029 1.2CONT-SPH

Fig. 14. Evolution of the minor axis a for ISPH, WCSPH (with density summation) and CONT-SPH (with continuity equation) and the
solution evaluated numerically from Eqs. (52) and (53). The horizontal dotted line corresponds to the cutoff radius h of the simulation.
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analytical solution for initial and intermediate times, remains closer to it for larger times (the crossover
between numerical and theoretical curve is delayed to t � 0.62). All the drops eventually break up after time
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Fig. 15. Snapshots of the drop at t = 0.4 for: WCSPH with density summation (top), CONT-SPH obtained by integrating the continuity
equation (middle) and ISPH (bottom). Notice the formation of artificial ring structures in the WCSPH drop. Contrary, the inner structure
of the ISPH and CONT-SPH drops remains much more homogeneous. In the latter two cases the elliptical shape of the drop is preserved.
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t = 1. One should notice that, as soon as the transversal dimension of the drop (minor axis a) becomes of the
order of the cutoff radius h = 0.075 (corresponding to the constant dotted line in Fig. 14), the accuracy of the
numerical results should become questionable because SPH is unable to describe physical phenomena below
the discretization length h. In order to obtain a better solution, an increasing number of particles should be
used in order to reduce h and remove spurious artificial effects.

In order to compare in detail the three methods, three snapshots of the particle configurations at the same
instant t = 0.4 are shown in Fig. 15. For WCSPH, patterns of alternating rings and voids appear as result of
the tensile instability, see Ref. [21]. The elliptical shape is lost. On the contrary, the simulations of ISPH and
CONT-SPH do not show such artificial effects and, in addition, preserve the elliptical shape of the drops dur-
ing all the run.

It is interesting to note that near the boundaries the last two methods present still clumping effects at
t = 0.4. These results differ from the regular particle configurations shown in Ref. [4] and are probably due
to the implementation of the XSPH variant used for the evolution of the particle positions which prevents
unphysical particle penetrations and could inhibit instabilities close to the surfaces.

The time steps used in these simulations were, respectively, Dt = 0.02 for ISPH and Dt = 0.0005 for
WCSPH and CONT-SPH (40 times smaller than ISPH). With a time step Dt = 0.001, the WCSPH drop blew
up shortly after start up.

One of the advantages of taking the density as an independent variable (CONT-SPH) is that the density
deficit (see Ref. [19]) near free boundaries is avoided. This produces more regular particle arrangements, free
of the tensile instability as observed in our simulations (Fig. 15). The drawback of updating the density
through the continuity equation, though, is the lack of exact mass conservation, which may be a problem
in those situations where very long times are required. Our incompressible method, by construction, does
not make use of the continuity equation and requires the density to be computed from Eq. (3). Therefore,
in our method we do have the density deficit problem near boundaries. Actually, we impose that the density
of each particle is constant during the simulation and consequently this implies that the particles near the sur-
face will always have a smaller density than those in bulk. Of course, this may induce errors when two free
surfaces contact each other. Our algorithm implies that those particles that are no longer at the surface, as
a consequence of the merging of the two free surfaces, will still have the lower initial density they had at
the beginning when they were at the free surface. We are presently working on a modification along the lines
of Ref. [19] in order to correct the density deficit near free surfaces.

The flows presented so far do not require the consideration of boundary conditions on fixed or moving
walls. Nevertheless, we have checked that the method works similarly well for planar solid walls. The imple-
mentation of boundary conditions on planar walls is done by following Refs. [17,18,5,20]. The main concern,
specially in the context of the method presented in this paper, is the problem of the density deficit that occurs if
one uses Eq. (3) for the fluid particles near the wall. According to Ref. [18], the density is given by Eq. (3) with
a correction factor that depends on the distance of the fluid particle to the wall. The only crucial point where
the SHAKE method enters into the formulation of boundary conditions is that one should keep this corrected
density fixed with the SHAKE algorithm to its initial constant value. Poiseuille and Couette flows have been
performed, with convergence tests similar to the ones presented for the periodic flows above.

6. Conclusions

We have implemented incompressibility in SPH by requiring that the volume of the fluid particles remains
constant. As opposed to methods where the divergence of the velocity field is required to vanish, we do not
need to solve a Poisson equation. Instead, we have to solve a set of non-linear equations for the constraints
that enforce the constancy of the volumes. But this can be done quite efficiently through the SHAKE meth-
odology. The main advantage of the present method over zeroing the divergence of the velocity is that we keep
the function (i.e. density) constant rather than its time derivative equal to zero (i.e. $ � v ¼ 0). Therefore, we do
not observe the accumulation of errors in the density field as in Ref. [6].

We have tested our method in several benchmark problems, analyzing the convergence rate, the efficiency
and the treatment of boundary conditions. The potential of the present new method is larger at high Reynolds
number simulations. In such simulations, the sonic constraint given by Eq. (45) is the one limiting the time
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step, rather than the viscous constraint in Eq. (44). In addition, in our method we do not need to store a N · N

matrix at every time step (as in Poisson solver methods) but only a diagonal one (N elements). For large-scale
simulations, as those commonly performed for the DNS of highly turbulent flows, this could also be a notable
advantage.

A remark on further possible improvements of the methodology is now in order. As already mentioned, our
SHAKE routine starts at any time step with an initial guess k0 = 0 and then iterations are performed until
convergence is obtained. It would be interesting to explore the possibility of optimizing the choice for the ini-
tial guess by using the information from the previous step (i.e. by considering for every particle its correspon-
dent old ki value or some average of it). Further acceleration of the SHAKE loop could be achieved by using
also line-searches and backtracking procedures as those commonly used in Newton–Raphson methods to
optimize the Newton step and, at the same time preserving its monotonic convergence [12]. Also the use of
the higher order terms in Eq. (32) should be considered. It could turn out that this correction, although slow-
ing down one single iterative step, could produce an overall benefit reducing the total number of iterations in
the SHAKE loop.

Finally, the Green–Taylor flows analyzed show that particle disorder has a strong influence on the accuracy
of results. It is possible to use remeshing techniques in order to have increased accuracy for the same number
of particles [15]. The methodology presented here for imposing incompressibility can be directly used in a
remeshed solution. Yet, it is an open problem how to formulate suitable remeshing techniques for free bound-
ary problems as in case of a deforming elliptic drop.

Acknowledgments

M.E. is grateful for the financial support provided by the Australian Research Council. Part of the research
was funded by the German Research Council (Deutsche Forschungsgemeinschaft). M.S. and P.E. acknowl-
edge financial support from the Ministerio de Educación y Ciencia, FIS2004-01934. M.S. thanks ‘‘Programa
Propio de la Investigación de la UNED’’ for financial support.

Appendix A

In this appendix we show that the set of Eq. (33) corresponds to the SHAKE algorithm as presented in Ref.
[11]. The essence of the SHAKE method consists on writing the constraint Eq. (24) in the following form
rðx0ðkÞÞ ¼ aþ Bkþ cðkÞ ¼ 0; ðA:1Þ
where a is a vector independent of k, B is a matrix independent of k and c(k) is the remaining non-linear func-
tion of k. We can decompose the matrix B = BD + BO where BD is the diagonal part of B and BO is the off-
diagonal part. Therefore, Eq. (A.1) can be rewritten as
BDk ¼ �ðaþ BOkþ cðkÞÞ; ðA:2Þ
which can be solved iteratively as
knþ1 ¼ �B�1
D ðaþ BOkn þ cðknÞÞ: ðA:3Þ
Of course, the inverse of a diagonal matrix is trivial to compute and makes the solution of (A.3) easy. The
basic assumption in SHAKE is that it is possible to write the constraint in the form (A.1). Depending on
the form of the constrain, it is not always easy to identify a linear term. This is precisely the case for the con-
straint (15). For this reason, we rewrite the SHAKE approach in the following way.

Let us write the constraint equation as
rðx0ðkÞÞ ¼ rðx0ðkÞÞ � orðx0ðkÞÞ
ok

����
k¼k0

k

" #
þ orðx0ðkÞÞ

ok

����
k¼k0

k ¼ ½aþ cðkÞ� þ Bk ¼ 0; ðA:4Þ
where we have extracted the ‘‘linear’’ term in k by defining the matrix B as
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B ¼ orðx0ðkÞÞ
ok

����
k¼k0

: ðA:5Þ
Here, k0 is a reference value of the Lagrange multipliers. In many application in molecular dynamics with con-
strains, the matrix B is just a constant and the actual value of k0 is irrelevant. In the case that the constraint is
such that B does actually depend on k one can use for the reference value of k0 the one obtained in the previous
time step.

By decomposing this matrix B in its diagonal and off-diagonal parts, Eq. (A.2) will have now the following
form
BDk ¼ �½rðx0ðkÞÞ � Bkþ B0k�; ðA:6Þ

which can be solved iteratively in the following very simple form
knþ1 ¼ kn � B�1
D rðx0ðknÞÞ: ðA:7Þ
It must be emphasized that we have done nothing else than rewriting the SHAKE algorithm in a particular
simple form and that Eq. (A.7) is identical to Eq. (A.3). However, the form (A.7) is much simpler than Eq.
(A.3) as it appears directly in terms of the constraint.
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